

Instruction for Use

virellaTropica 1 real time RT-PCR Kit

For the qualitative *in-vitro* detection of RNA from Zika Virus, Chikungunya Virus, Dengue Viruses 1-4 and Yellow Fever Virus in clinical specimens.

Index

1	Inten	ded Use	3
2	Patho	ogen Information	3
3	Princi	ple of the Test	4
4	Packa	age Contents	5
5	Equip	ment and Reagents to be Supplied by User	5
6	Trans	port, Storage and Stability	6
7	Impo	rtant Notes	6
8	Gene	ral Precautions	6
9	Samp	ole Material	6
10	Samp	ole Preparation	7
11	Contr	ol RNA	7
12	Real	time RT-PCR	8
12	2.1	Important Points Before Starting:	8
12	2.2	Procedure	8
12	2.3	Instrument Settings	
13	Data	Analysis	
14	Assay	y Validation	15
15	Limit	ations of the Method	15
16	Troub	oleshooting	15
17	Kit Pe	erformance	
17	7.1	Analytical Sensitivity	
17	7.2	Analytical Specificity	
17	7.3	Reference Material and Proficiency Testing	
18	Abbre	eviations and Symbols	21
19	Litera	ature	21

1 Intended Use

The virellaTropica 1 real time RT-PCR is an assay for the detection of the RNA from Zika Virus, Chikungunya Virus, Dengue Viruses 1-4 and Yellow Fever Virus extracted from clinical specimens (e.g. blood samples, serum samples, urine samples) using real time PCR microplate systems.

2 Pathogen Information

Zika Virus disease is caused by a virus transmitted primarily by *Aedes* mosquitoes in tropical regions. But it can also be transmitted through sexual intercourse. The incubation period of Zika Virus disease is not clear, but is likely to be a few days. The symptoms are similar to other arbovirus infections such as Dengue Viruses, West Nile Virus and others and include fever, skin rashes, conjunctivitis, muscle and joint pain, malaise, and headache. These symptoms are usually mild, require no specific treatment and last for 2 to 7 days. Currently no vaccine against the Zika Virus is available. There is scientific consensus that Zika Virus is a cause of microcephaly in the unborn child and Guillain-Barré syndrome. Links to other neurological complications are also being investigated.

Chikungunya is a viral disease transmitted to humans by infected mosquitoes. The disease mostly occurs in Africa, Asia and the Indian subcontinent. However, a major outbreak in 2015 affected several countries of the Region of the Americas. After the bite of an infected mosquito, onset of illness occurs usually between 4 and 8 days but can range from 2 to 12 days. The disease shares some clinical signs with Dengue and Zika, and can be misdiagnosed in areas where they are common. It causes fever and severe joint pain. Other symptoms include muscle pain, headache, nausea, fatigue and rash. Most patients recover fully, but in some cases joint pain may persist for several months, or even years. Occasional cases of eye, neurological and heart complications have been reported, as well as gastrointestinal complaints. Serious complications are not common, but in older people, the disease can contribute to the cause of death. Treatment is focused on relieving the symptoms.

Dengue is a mosquito-borne viral infection that can be caused by four distinct, but closely related, serotypes of the virus. Dengue is found in tropical and sub-tropical climates worldwide, mostly in urban and semi-urban areas. The global incidence of Dengue has grown dramatically in recent decades. The infection

causes flu-like illness, and occasionally develops into a potentially lethal complication called Severe Dengue (also known as Dengue Haemorrhagic Fever). Dengue should be suspected when a high fever is accompanied by 2 of the following symptoms: severe headache, pain behind the eyes, muscle and joint pains, nausea, vomiting, swollen glands or rash. Symptoms usually last for 2 to 7 days, after an incubation period of 4 to 10 days. Severe Dengue is a potentially deadly complication due to plasma leaking, fluid accumulation, respiratory distress, severe bleeding, or organ impairment. There is no specific treatment for Dengue/Severe Dengue, but a vaccine is registered and available in several countries.

Yellow Fever is an acute viral haemorrhagic disease transmitted by infected mosquitoes. The virus is endemic in tropical areas of Africa and Central and South America. Once contracted, the yellow fever virus incubates in the body for 3 to 6 days. Many people do not experience symptoms, but when these do occur, the most common are fever, muscle pain with prominent backache, headache, loss of appetite, and nausea or vomiting. In most cases, symptoms disappear after 3 to 4 days. A small percentage of patients, however, enter a second, more toxic phase within 24 hours of recovering from initial symptoms. High fever returns and several body systems are affected, usually the liver and the kidneys. In this phase people are likely to develop jaundice, dark urine and abdominal pain with vomiting. Bleeding can occur from the mouth, nose, eyes or stomach. Half of the patients who enter the toxic phase die within 7 to 10 days. Yellow fever can be prevented by vaccination.

3 Principle of the Test

The virellaTropica 1 real time RT-PCR contains specific primers and hydrolysis probes for the detection of the nucleic acids of Zika Virus, Chikungunya Virus, Dengue Viruses 1-4 and Yellow Fever Virus extracted from clinical specimens (e.g. blood samples, serum samples, urine samples) using real time PCR microplate systems. The reverse transcription (RT) of viral RNA to cDNA and the subsequent amplification of virus specific fragments are performed in a one-step RT-PCR. The amplification can be detected when specific probes are hydrolysed by the Polymerase. The emitted fluorescence is measured in the FAM (Yellow Fever Virus and Chikungunya Virus), ROX (Dengue Viruses 1-4) and Cy5 (Zika Virus) channel.

Furthermore, the virellaTropica 1 real time RT-PCR contains a Control RNA, which is detected in a second amplification system. Added during RNA extraction, the Control RNA allows not only for the detection of RT-PCR inhibition but also detects possible mistakes during RNA extraction. This greatly reduces the risk of false-negative results. The Control RNA can also be used solely as Internal Control by adding it directly to the Mastermix. The fluorescence of the Control RNA is measured in the VIC®/HEX/JOE™/TET channel.

4 Package Contents

The reagents supplied are sufficient for 32 or 96 reactions respectively.

Label	Lid Colour	Cor	itent
		32	96
Reaction Mix 1 (Zika Virus, Yellow Fever Virus)	yellow	1 x 474 µl	2 x 711 µl
Reaction Mix 2 (Chikungunya Virus, Dengue Viruses 1-4)	orange	1 x 474 µl	2 x 711 µl
Enzyme	blue	1 x 12.8 µl	2 x 19.2 µl
Positive Control 1 (Zika Virus, Yellow Fever Virus)	red	1 x 75 µl	1 x 220 µl
Positive Control 2 (Chikungunya Virus, Dengue Viruses 1-4	red	1 x 75 µl	1 x 220 µl
Negative Control	green	1 x 150 µl	1 x 440 µl
Control RNA	colourless	1 x 320 µl	2 x 480 µl

Table 1: Components of the virellaTropica 1 real time RT-PCR Kit

5 Equipment and Reagents to be Supplied by User

- RNA isolation kit (e.g. NukEx Pure RNA/DNA, gerbion Cat. No. G05004 or NukEx Mag RNA/DNA, gerbion Cat. No. G05012)
- PCR grade Water
- Sterile microtubes
- Pipets (adjustable volume)
- Sterile pipet tips with filter
- Table centrifuge
- Vortexer
- Real time PCR instrument

- Optical PCR reaction tubes with lid
- Optional: Colour Compensation Kit
- Optional: Liquid handling system for automation
- Optional: VLP-RNA (Virus-Like Particles, please look at chapter ,Control RNA' for details.)

6 Transport, Storage and Stability

The virellaTropica 1 real time RT-PCR Kit is shipped on dry ice or cool packs. All components must be stored at -18°C in the dark immediately after receipt. Do not use reagents after the date of expiry printed on the package.

Up to 20 freeze and thaw cycles are possible.

For convenience, opened reagents can be stored at +2-8°C for up to 6 months. Protect kit components from direct sunlight during the complete test run.

7 Important Notes

- The virellaTropica 1 real time RT-PCR must be performed by qualified personnel only.
- Good Laboratory Practice (GLP) has to be applied.
- Clinical samples must always be regarded as potentially infectious material and all equipment used has to be treated as potentially contaminated.

8 General Precautions

- Stick to the protocol described in the Instruction for use.
- Set up different laboratory areas for the preparation of samples and for the set up of the RT-PCR in order to avoid contaminations.
- Pipettes, tubes and other materials must not circulate between those different laboratory areas.
- Always use filter tips.
- Regulary decontaminate equipment and benches with ethanol-free decontaminant.
- Do not combine virellaTropica 1 real time RT-PCR components of different lot numbers.

9 Sample Material

Starting material for the virellaTropica 1 real time RT-PCR is the nucleic acid isolated from clinical specimens (e.g. blood samples, serum samples, urine samples).

10 Sample Preparation

The virellaTropica 1 real time RT-PCR is suitable for the detection of the RNA from Zika Virus, Chikungunya Virus, Dengue Viruses 1-4 and Yellow Fever Virus in clinical specimens (e.g. blood samples, serum samples, urine samples) isolated with suitable isolation methods.

Commercial kits for RNA isolation such as the following are recommended:

- NukEx Pure RNA/DNA, gerbion Cat. No. G05004
- NukEx Mag RNA/DNA, gerbion Cat. No. G05012

Important:

In addition to the samples always run a ,water control' in your extraction. Treat this water control analogous to a sample.

Comparing the amplification of the Control RNA in the samples to the amplification of the internal control in the water control will give insights on possible inhibitions of the real time RT-PCR. Furthermore, possible contaminations during RNA extraction will be detectable.

Please note the chapter ,Control RNA'.

If the real time RT-PCR is not performed immediately, store extracted RNA according to the instructions given by the manufacturer.

11 Control RNA

A Control RNA is supplied and can be used as extraction control or only as inhibition control. This allows the user to control the RNA isolation procedure and to check for possible real time RT-PCR inhibition.

The Virus-Like Particles (VLP-RNA) are not supplied, but must be added to the clinical samples directly. VLP-RNA can be used as patient-side extraction control and in automated extraction systems, when pipetting of the Control RNA to the first buffer (e.g. binding buffer) of the respective extraction kit is not possible due to extraction instrument specifications.

RNA isolation from clinical specimens (e.g. blood samples, serum samples, urine samples).

a) <u>Control RNA or VLP-RNA used as Extraction Control:</u>

virellaTropica 1 real time RT-PCR Control RNA or VLP-RNA is added to the RNA extraction.

Add 5 μl Control RNA or VLP-RNA per extraction (5 μl x (N+1)). Mix well. Perform the RNA isolation according to the manufacturer's instructions. Please follow protocol A.

The Control RNA must be added to the Lysis Buffer of the extraction kit.

b) <u>Control RNA used as Internal Control of the real time RT-PCR:</u> If only inhibition will be checked please follow protocol B.

12 Real time RT-PCR

12.1 Important Points Before Starting:

- Please pay attention to the chapter 7 ,Important Notes'.
- Before setting up the real time RT-PCR familiarise yourself with the real time PCR instrument and read the user manual supplied with the instrument.
- The programming of the thermal profile should take place before the PCR set up.
- In every PCR run one Positive Control and one Negative Control should be included.
- Before each use, all reagents except the Enzyme should be thawed completely at room temperature, thoroughly mixed and centrifuged very briefly.

12.2 Procedure

If the Control RNA or VLP-RNA is used to control both, the real time RT-PCR and the RNA isolation procedure, please follow protocol A. If the Control RNA is solely used to detect possible inhibition of the real time RT-PCR, please follow protocol B.

Protocol A

The Control RNA or VLP-RNA was added during RNA extraction (see chapter 11 ,Control RNA'). In this case, prepare the Master Mixes 1 and 2 according to Table 2.

The Master Mixes contain all of the components needed for RT-PCR except the sample. Prepare a volume of Master Mix for at least one sample more than required, in order to compensate for pipetting inaccuracy.

Table 2: Preparation of the Master Mix 1 or 2 (Control RNA or VLP-RNA was added during RNA extraction)

Volume per Reaction	Volume Master Mix 1 or 2		
14.8 µl Reaction Mix 1 or 2	14.8 µl x (N+1)		
0.2 µl Enzyme	0.2 µl x (N+1)		

Protocol B

The Control RNA is used for the control of the real time RT-PCR only (see chapter 11, Control RNA'). In this case, prepare the Master Mixes according to Table 3.

The Master Mixes contain all of the components needed for real RT-PCR except the sample. Prepare a volume of Master Mix for at least one sample more than required, in order to compensate for pipetting inaccuracy.

Important: Dilute the Control RNA **1:10** in PCR grade Water (e.g. 1 μ l Control RNA + 9 μ l PCR grade Water) before adding it to the Master Mixes.

Table 3: Preparation of the Master Mix 1 or 2 (Control RNA is added directly to the Master Mix)

Volume per Reaction	Volume Master Mix 1 or 2
14.8 µl Reaction Mix 1 or 2	14.8 µl x (N+1)
0.2 µl Enzyme	0.2 μl x (N+1)
0.2 µl Control RNA* (diluted 1:10)	0.2 µl x (N+1)*

*The increase in volume caused by adding the Control RNA is not taken into account when preparing the PCR assay.

Protocol A and B: real time RT-PCR set up

- Place the number of optical PCR reaction tubes needed into the respective tray of the real time PCR instrument.
- Pipet $15\ \mu l$ of each Master Mix (1 and 2) into two separate optical PCR reaction tubes.
- Add $10 \ \mu l$ of the eluates from the RNA isolation (including the eluate of the water control), the respective Positive Control and the Negative Control to the corresponding optical PCR reaction tubes (Table 4).
- Close the optical PCR reaction tubes immediately after filling inorder to reduce the risk of contamination.

Table 4: Preparation of the real time RT-PCR

Component	Volume
Master Mix	15.0 µl
Sample	10.0 µl
Total Volume	25.0 µl

12.3 Instrument Settings

For the real time RT-PCR use the thermal profile shown in Table 5.

Table 5: real time RT-PCR thermal profile

Description	Time Temperature		Number of Cycles
Reverse Transcription	8 min	50°C	1
Initial Denaturation	3 min	95°C	1
Amplification of cDNA			
Denaturation	10 sec	95°C	45
Annealing and Extension	45 sec Aquisition at the e	60°C end of this step	

Dependent on the real time PCR instrument used, further instrument settings have to be adjusted according to Table 6.

real time PCR Instrument	Parameter	Detection Channel	Notes			
			Colour Compensation Kit Multiplex 1 (G070MP1-cc) required			
			Melt Factor	Quant Factor	Max Integration Time (sec)	
LightCycler 480II	Chikungunya Virus Yellow Fever Virus	465-510	1	10	1	
	Dengue Viruses 1-4	533-610	1	10	2	
	Control RNA	533-580	1	10	2	
	Zika Virus	618-660	1	10	3	
	Chikungunya Virus Yellow Fever Virus	FAM	Gain 8			
Stratagene Mx3000P /	Dengue Viruses 1-4	ROX	Gain 1		Reference Dye:	
Mx3005P	Control RNA	HEX	Gain 1		None	
	Zika Virus	Cy5	Gain 4			
	Chikungunya Virus Yellow Fever Virus	FAM				
ABI 7500	Dengue Viruses 1-4	ROX	Option Re	Option Reference Dye ROX: NO		
	Control RNA	JOE	· · · · · · · · · · · · · · · · · · ·			
	Zika Virus	Cy5				
Potor Cono O	Chikungunya Virus Yellow Fever Virus	Green	Gain 5			
Rotor-Gene Q, Rotor-Gene 3000	Dengue Viruses 1-4	Orange	Gain 5			
Rotor-Gene 6000	Control RNA	Yellow	Gain 5			
	Zika Virus	Red	Gain 5			

Table 6: Overview of the instrument settings required for the virellaTropica 1 real time RT-PCR.

13 Data Analysis

The virus specific amplifications are measured in the FAM, ROX, Cy5 channels. The amplification of the Control RNA is measured in the VIC[®]/HEX/JOETM/TET channel. The Positive Control contains in vitro transcripts of the respective nucleic acid sequences of Zika Virus, Chikungunya Virus, Dengue Viruses 1-4 and Yellow Fever Virus. For the Positive Control, signals in the FAM, ROX, Cy5 channels must be detected. The interpretation of the test results is described in table 7 and table 8.

Signal/Ct Values			
FAM Channel Yellow Fever Virus	Cy5 Channel Zika Virus	HEX Channel Control RNA	Interpretation
positive	positive	positive or negative*	Positive result, the sample contains Yellow Fever Virus-RNA and Zika Virus-RNA.
positive	negative	positive or negative*	Positive result, the sample contains Yellow Fever Virus-RNA.
negative	positive	positive or negative*	Positive result, the sample contains Zika Virus- RNA.
negative	negative	≤ 34**	Negative result, the sample contains no Yellow Fever Virus-RNA and Zika Virus-RNA.
negative	negative	negative or > 34**	No diagnostic statement can be made. The real time PCR is either inhibited or errors occurred while RNA extraction.

Table 7: Interpretation Reaction Mix 1

Table 8: Interpretation Reaction Mix 2

	Ct Values		
FAM Channel Chikungunya Virus	ROX Channel Dengue Viruses 1-4	HEX Channel Control RNA	Interpretation
positive	positive	positive or negative*	Positive result, the sample contains Chikungunya Virus-RNA and Dengue Viruses 1-4-RNA.
positive	negative	positive or negative*	Positive result, the sample contains Chikungunya Virus-RNA.
negative	positive	positive or negative*	Positive result, the sample contains Dengue Viruses 1-4-RNA.
negative	negative	≤ 34**	Negative result, the sample contains no Chikungunya Virus-RNA and Dengue Viruses 1-4-RNA.
negative	negative	negative or > 34**	No diagnostic statement can be made. The real time PCR is either inhibited or errors occurred while RNA extraction.

* A strong positive signal in the FAM, Cy5 and/or ROX can inhibit the IC. In such cases the result for the Control RNA can be neglegted.

**Depending on the PCR instrument and/or the chosen extraction method, the Ct values might be shifted. The water control can be used as reference. If the HEX Ct value of a sample differs a lot from the water control, partial inhibition has occurred, leading to false negative results in case of weak positive samples.

Figure 1 and Figure 2 show examples for positive and negative real time PCR results.

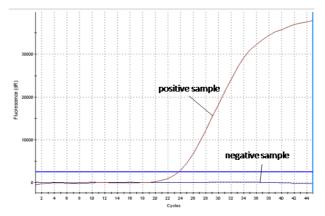


Figure 1: The positive sample shows virus-specific amplification, whereas no fluorescence signal is detected in the negative sample.

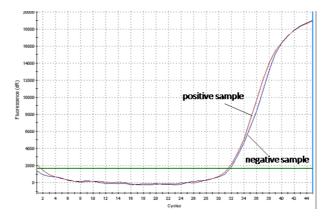


Figure 2: The positive sample as well as the negative sample show a signal in the Control RNA specific VIC[®]/HEX/JOETM/TET channel. The amplification signal of the Control RNA in the negative sample shows, that the missing signal in the virusspecific channel is not due to RT-PCR inhibition or failure of RNA isolation, but that the sample is a true negative.

14 Assay Validation

Set a threshold as follows:

Negative Controls

All negative controls should be below the threshold. If there is a potential contamination (appearance of a curve in the negative control or a cluster of curves in specimens at high C_T – for example above 36), results obtained are not interpretable and the whole run (including extraction) has to be repeated.

Positive Controls

All the positive controls must show a positive (i.e. exponential) amplification curve. The positive controls must fall below a C_T of 30.

Internal Controls

All internal controls must show a positive (i.e. exponential) amplification curve. The internal control must fall below a C_T of 33. If the internal control is above C_T 34, this points to a purification problem or a strong positive sample that can inhibit the IC. In the latter case, the assay is valid. If a water control run is performed, the IC must fall below a C_T of 33.

15 Limitations of the Method

The results must always be considered in relation to the clinical symptoms. Therapeutical consequences should be made in consideration of clinical data. A negative test result does not exclude an infection with the respective viruses

16 Troubleshooting

The following troubleshooting guide is included to help you with possible problems that may arise when performing a real time RT-PCR. If you have further questions, please do not hesitate to contact our scientists on info@gerbion.com.

No fluorescence signal in the FAM, ROX, Cy 5 channel of the Positive Controls				
The selected channel for analysis does not comply with the protocol	Select the FAM channel for analysis of the Yellow Fever Virus or Chikungunya Virus specific amplification, the ROX channel for analysis of the Dengue Viruses 1-4 specific amplification and the Cy5 channel for analysis of the Zika Virus specific amplification. Select the VIC [®] /HEX/JOE TM /TET channel for the amplification of the Control RNA. Due to amplification in the specific channels, amplification of the Internal Control can be inhibited in the Positive Control.			

Incorrect configuration of the real time PCR	Check your work steps and compare with ,Procedure' on page 8.
The programming of the thermal profile is incorrect	Compare the thermal profile with the protocol (Table 5, page 10).
Incorrect storage conditions for one or more kit components or kit expired	Check the storage conditions and the date of expiry printed on the kit label. If necessary, use a new kit and make sure kit components are stored as described in ,Transport, Storage and Stability', page 6.
Weak or no signal of the Control FAM channel, ROX channel or Cy5	RNA and simultaneous absence of a signal in the virus specific ; channel.
real time PCR conditions do not comply with the protocol	Check the real time PCR conditions (page 8).
real time RT-PCR inhibited	Make sure that you use an appropriate isolation method (see ,Sample Preparation', page 7) and follow the manufacturer's instructions. Make sure that the ethanol-containing washing buffer of the isolation kit has been completely removed. An additional centrifugation step at high speed is recommended before elution of the RNA.
RNA loss during isolation process	In case the Control RNA was added before extraction, the lack of an amplification signal can indicate that the RNA isolation was not successful. Make sure that you use an appropriate isolation method (commercial kits are recommended) and stick to the manufacturer's protocol.
Incorrect storage conditions for one or more components or kit expired	Check the storage conditions and the date of expiry printed on the kit label. If necessary, use a new kit and make sure kit components are stored as described in ,Transport, Storage and Stability', page 6.
Detection of a fluorescence signa Negative Control.	l in the FAM channel, ROX channel or Cy5 channel of the
Contamination during preparation of the PCR	Repeat the real time RT-PCR in replicates. If the result is negative in the repetition, the contamination occured when the samples were pipetted into the optical PCR reaction tubes. Make sure to pipet the Positive Control last and close the optical PCR reaction tube immediately after adding the sample. If the same result occurs, one or more of the kit components might be contaminated. Make sure that work space and instruments are decontaminated regularly. Use a new kit and repeat the real time RT-PCR.
Detection of a weak fluorescence fluorescence signal in the Cy5 ch	signal in the FAM channel of a sample with a strong annel.
Cross-talk	Depending on the real time PCR instrument used, a strong fluorescence signal in one detection channel can lead to a weak signal (around C_T 40) in another channel due to so-called cross-talk between channels.

17 Kit Performance

17.1 Analytical Sensitivity

The limit of detection (LoD) of virellaTropica 1 real time RT-PCR was determined using serial dilutions of *in vitro* transcripts in nucleic acid stabilization buffer analysed on a Stratagene Mx3000 real time PCR instrument.

The LoD of virellaTropica 1 real time RT-PCR for Chikungunya Virus, Yellow Fever Virus, and Dengue Viruses 1-4 is \geq 10 copies per reaction each. The LoD of virellaTropica 1 real time RT-PCR for Zika Virus is \geq 5 copies per reaction.

17.2 Analytical Specificity

The specificity of virellaTropica 1 real time RT-PCR was evaluated by in silico analysis and by amplification of RNA and DNA of other relevant viruses and bacteria found in clinical samples.

The virellaTropica 1 real time RT-PCR showed positive results for the samples containing Zika Virus, Chikungunya Virus, Dengue Viruses 1-4 and Yellow Fever Virus, whereas samples containing other pathogens were reliably tested negative. The results are shown in table 9.

Table 9: Bacterial and viral pathogens tested for the determination of the analytical specificity of virellaTropica 1 real time RT-PCR.

Pathogen	Expected Result	Result
West Nile Virus	negative	negative
TBE Virus	negative	negative
Rift Valley Fever Virus	negative	negative
Usutu Virus	negative	negative
Hanta Virues	negative	negative
Japanese B Encephalitis Virus	negative	negative
Crimean Congo Virus	negative	negative
Sindbis Virus	negative	negative
Mayaro Virus	negative	negative
Cytomegalovirus	negative	negative
HIV	negative	negative
HBV	negative	negative
НСV	negative	negative

Pathogen	Expected Result	Result
Influenzavirus A	negative	negative
Enterovirus	negative	negative
Respiratory Syncytial Virus	negative	negative
Plasmodium	negative	negative
Staphylococcus ssp.	negative	negative
Streptococcus ssp.	negative	negative
Klebsiella ssp.	negative	negative
Borrelia burgdorferi	negative	negative
Anaplasma phagocytophilum	negative	negative
Ehrlichia spec.	negative	negative
Babesia microti	negative	negative
Babesia divergens	negative	negative
Babesia sp. EU1 (Babesia venatorum)	negative	negative
Coxiella burnetii	negative	negative
Zika Virus	positive	positive
Chikungunya Virus	positive	positive
Yellow Fever Virus	positive	positive
Dengue Virus 1	positive	positive
Dengue Virus 2	positive	positive
Dengue Virus 3	positive	positive
Dengue Virus 4	positive	positive

17.3 Reference Material and Proficiency Testing

Reference samples (extracted RNA) for Zika Virus were obtained from the Robert-Koch-Institute (RKI), Berlin. Reference samples (extracted RNA) for Zika Virus, Dengue Viruses 1-4, Chikungunya Virus, and Yellow Fever Virus were additionally obtained from a University Lab in Germany. Samples of INSTAND e.V. were tested additionally.

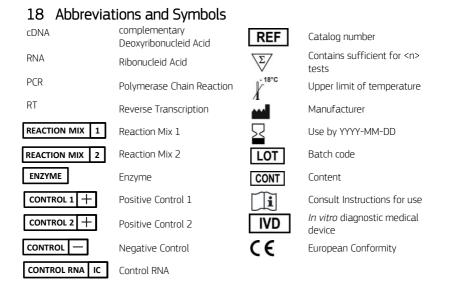

Pathogen	Expected Result	Result
Zika Virus (RKI Standard)	positive	positive
Zika Virus	positive	positive
Chikungunya Virus	positive	positive
Yellow Fever Virus	positive	positive
Ampli Run Yellow Fever Virus (Vircell)	positive	positive
Dengue Virus 1	positive	positive
Dengue Virus 2	positive	positive
Dengue Virus 3	positive	positive
Dengue Virus 4	positive	positive

Table 10: Reference Material Testing using virellaTropica 1 real time RT-PCR.

19

Sample	Expected Result - Dilution	Result
403001	Zika Virus positive – African Lineage 1:250	positive
403002	Zika Virus positive – African Lineage 1:25	positive
403003	Zika Virus negative	negative
403004	Zika Virus positive – African Lineage 1:2500	positive
403013	Zika Virus positive – Asian Lineage 1:500	positive
403014	Zika Virus positive – Asian Lineage 1:50	positive
403015	Zika Virus negative	negative
403016	Zika Virus positive – African Lineage 1:400	positive
369021	Dengue Virus positive – DENV-2 1:400	positive
369022	Dengue Virus positive – DENV-4 1:7,5	positive
369023	Dengue Virus positive – DENV-1 1:70	positive
369024	Dengue Virus positive – DENV-2 1:4	positive
369029	Dengue Virus negative	negative
369030	Dengue Virus positive – DENV-2 1:40	positive
369031	Dengue Virus positive – DENV-1 1:140	positive
369032	Dengue Virus positive – DENV-2 1:400	positive
392021	Chikungunya Virus positive – 1:4500	positive
392022	Chikungunya Virus positive – 1:13500	positive
392023	Chikungunya Virus positive – 1:1500	positive
392024	Chikungunya Virus negative	negative
392005	Chikungunya Virus positive – 1:10000	positive
392006	Chikungunya Virus positive – 1:1000	positive
392007	Chikungunya Virus positive – 1:10000	positive
392008	Chikungunya Virus positive – 1:10000	positive
12 copies per µl	AmpliRun Yellow Fever Virus	positive
1.2 copies per µl	AmpliRun Yellow Fever Virus	positive
0.12 copies per µl	AmpliRun Yellow Fever Virus	positive

Table 11: Proficiency Testing using virellaTropica 1 real time RT-PCR.

19 Literature

- [1] Zika Virus. WHO updated fact sheet 06 September 2016.
- [2] Chikungunya. WHO fact sheet, updated April 2017.
- [3] Dengue and Severe Dengue. WHO fact sheet, updated April 2017.
- [4] Yellow Fever, WHO fact sheet, updated May 2016